XU2HI Temperature Head **Mount Isolated Transmitter**

USB Programmable Isolated Temperature Head Mount 4~20mA **Output Loop Powered Transmitter**

Features:

Programmable via USB (requires the **XU-USB** programming key).

No power supply or calibration required during programming.

Input types:

- RTD Pt100 and Pt1000.
- Thermocouple B, E, J, K, N, R, S, T.
- Input to Output Isolation of 3750Vac.
- Output is Linear with Temperature.
- High Accuracy 0.1%.
- Reverse Polarity Protected.
- Heartbeat Status LED.
- Case Temperature range -20°C to +85°C.
- Head Mount.
- Easy to Install.
- Low Cost.

Ordering Information:

XU2HI Head Mount Transmitter Isolated; Standard = RTD Pt100, 0~100°C Input; Upscale; 4~20mA Output (Loop Powered).

XU-USB **USB Programming Key**

Download free software via the link from: www.intech.co.nz/xu2hi

Note: The table below shows the USB programmable input types etc for the XU2HI:

The XU2HI can be pre-programmed before dispatch or is easily programmed using the XU-USB programming key and the free XU programming software.

ITEM	CODE				DESCRIPTION	
SERIES	XU2HI-				Head Mount Transmitter Isolated	
Type of		Pt100-			RTD Pt100 DIN (0	Options JIS & CN10)
		Pt1000-			RTD Pt1000 DIN (0	Options JIS & CN10)
in in	put	Тс □-			Thermocouple Type; B, E, J, K, N, R, S, T	
Measuring Range -				State Measuring Range		
Output Action on Sensor Fail				US	Upscale	
				DS	Downscale	

Ordering Examples:

XU2HI - Pt100 - 0~100C - DS XU2HI; RTD Pt100 DIN 0~100°C Input; Downscale; 4~20mA Output. 2/ XU2HI - Tc K - 0~1200C - US XU2HI; Thermocouple Type K 0~1200°C Input; Upscale; 4~20mA Output.

Product Liability. This information describes our products. It does not constitute guaranteed properties and is not intended to affirm the suitability of a product for a particular application. Due to ongoing research and development, designs, specifications, and documentation are subject to change without notification. Regrettably, omissions and exceptions cannot be completely ruled out. No liability will be accepted for errors, omissions or amendments to this specification. Technical data are always specified by their average values and are based on Standard Calibration Units at 25C, unless otherwise specified. Each product is subject to the 'Conditions of Sale'

Warning: These products are not designed for use in, and should not be used for patient connected applications. In any critical installation an independent fail-safe back-up system must always be implemented.

XU2HI Common Specifications:

Output 2-wire 4~20mA (Loop Powered)

Power Supply 9.5~36Vdc Supply Voltage Sensitivity <±0.005%/V FSO

Output Load Resistance 700Ω at 24Vdc (50Ω /V above 9.5Vdc)

Maximum Output Current Limited to <28mA (Emission and Immunity)

Emissions Compliance EMC EN 61326
Immunity Compliance EMC EN 61326
Safety Compliance EMC EN 61010-1
Accurate to <±0.03% FSO Typical
Ambient Drift <±0.003%/°C FSO Typical

Noise Immunity 125dB CMRR Average (2.0kVdc Limit)

R.F. Immunity <1% effect FSO Typical

Isolation Test Voltages Between Input and Output: 3750Vac for 1min

Response Time 400msec Typical (10~90% 300msec Typical)

Sensor Fail Low 3.8mA, High 21mA
Startup Time 3 seconds, 3.7mA output
Output calibrate via Pot ±0.5mA Zero offset adjust

Operating Temperature -20~85°C Storage Temperature -20~100°C

Operating Humidity 5~85%RH MAX (Non-Condensing)

Mounting Head Mount

Dimensions H=44, W=44, D=23mm

Thermocouple (T/C) Input Specifications:

Thermocouple Types B, E, J, K, N, R, S, T USB Programmable Zero $0\sim\pm99\%$ of the Span

USB Programmable Span Within Thermocouple Type limits

Input Impedance 1MΩ Minimum T/C Lead Resistance 100Ω Maximum Cold Junction Comp. $-20\sim90$ °C

Accuracy E, J, K, N, T $<\pm1^{\circ}$ C

B, R, S <±2°C

Temperature Drift E, J, K, N, T <±0.05°C

B, R, S <±0.2°C

CJC Error <±1°C

Sensor Break Output Drive Funct High Upscale

Funct Low Downscale

RTD Input Specifications:

RTD Input Pt100 or Pt1000 DIN 3-wire Type.

(2-wire can be used with offset calibration)

Sensor Current 0.15mA Nominal

Lead Wire Resistance Pt100: 10Ω/wire Maximum

Pt1000: 5Ω/wire Maximum

0.02% FSO Offset Error per Ω of Lead Resistance

USB Programmable Zero 0~±99% of the Span

USB Programmable Span -200~850°C

Sensor Break Output Drive Funct High Upscale

Funct Low Downscale

Linearity (Pt100) 0.02% FSO for Span Inputs ≤200°C

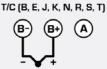
0.1% FSO for Span Inputs ≤850°C

Linearity (Pt1000) 0.02% FSO for Span Inputs ≤200°C 0.2% FSO for Span Inputs ≤520°C

Other Available RTD Types JIS and CN10

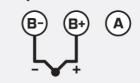
TEMPERATURE INPUT

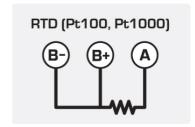
mA OUTPUT

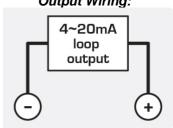

Zero Status
Pot LED

A

BBBA


TC [B, E, J, K, N, R, S, T]




Heartbeat LED:				
LED Indication:	Status:			
LED on for 2 seconds	Startup			
½ sec on, ½ sec off	Good			
3 Sec on, 1 Sec off	Sensor Break			
Always on	Fault			
Always off	Fault or no 4~20mA current			

T/C (B, E, J, K, N, R, S, T)

XU2HI Wiring, Installation and Maintenance.

The XU2HI is to be Installed and Serviced by Service Personnel Only. No Operator / User Serviceable Parts. All power and signals must be de-energised before connecting any wiring.

Mounting.

- * Also refer to Connection Diagrams and Notes.
- Mount in a water proof industrial connection head.
- (2) Do not subject to vibration or excess temperature or humidity variations.
- (3) Screws are supplied. Do not overtighten.
- (4) Avoid mounting near power control equipment.

Analogue Signal Wiring.

- (1) All signal cables should be good quality overall screened INSTRUMENTATION CABLE with the screen earthed at one end
- (2) Signal cables should be laid a minimum distance of 300mm from any power cables.
- (3) For 2 wire current loops, Austral Standard Cables B5102ES is recommended.
- (4) It is recommended that you do not ground analogue signals and use power supplies with ungrounded outputs.
- (5) Lightning arrestors should be used when there is a danger from this source.
- (6) Refer to diagrams for connection information. Observe polarity and the correct terminal connections for wiring correctly.

Thermocouples.

- (1) Avoid locating the Thermocouple where it will be in a direct flame.
- (2) Never insert a porcelain or refractory tube suddenly in a hot area. Pre-heat gradually while installing.
- (3) Locate it where the average temperature will be measured. It should be representative of the mass. If necessary use several Thermocouples to obtain the average temperature.
- (4) Immerse the Thermocouple far enough so that the measuring junction is entirely in the temperature to be measured: nine to ten times the diameter of the protection tube is recommended. Heat conducted away from the junction causes an error in reading.
- 5) If the Thermocouple is mounted horizontally and the temperature is above the softening point of the tube, a support should be provided to prevent the tube sagging. Otherwise install the tube vertically.
- (6) Keep the junction head and cold junction in the approximation of the ambient temperature. Especially in the Noble Metal Class.

Thermocouple Extension Wire.

- (1) Use the correct Thermocouple extension or compensation cable. I.e. Thermocouple type, insulation type, colour coding.
- (2) It is recommended to install extension or compensation cable in a grounded conduit by themselves, or use overall screened cable with the screen earthed at one end only. Never run electrical wires in the same conduit.
- (3) All wires that must be spliced should be soldered, or a proper Thermocouple termination block used.
- (4) Lightning arrestors should be used if there is a danger from this source.

RTDs.

- (1) Avoid locating the RTD where it will be in a direct flame.
- (2) Locate it where the average temperature will be measured. It should be representative of the mass.
- (3) Immerse the RTD far enough so that the measuring point is entirely in the temperature to be measured; nine to ten times the diameter of the protection tube is recommended. Heat that is conducted away from the measuring point causes an error in reading.

XU2HI Commissioning.

(1) Check that the XU2HI has been set to the correct input ranges and all functions such as Upscale/Downscale. Observe polarity and the correct terminal connections for wiring correctly. Only use certified calibration equipment. Once the above conditions have been met, and the wiring checked, apply power to the XU2HI, and associated current loops, transducers, sensors and indicators etc. Allow a 5 minute warm-up period.

RTD Inputs: A small error can occur due to differences in cable resistance in the RTD legs, and errors in the RTD itself. (Usually less than 0.5C).

XU2HI Maintenance.

RTD Inputs.

- (1) Check RTD's in place. Do it regularly at least once every six months.
- (2) Replace defective protection tubes even if they look good they may not be air or gas tight.
- (3) Check cables entering the RTD sensor head.

Thermocouple Inputs.

- (1) Replace defective protection tubes even if they look good they may not be air or gas tight.
- (2) Check extension and compensating cable circuits, especially cables entering the Thermocouple sensor head.
- (3) Do not use the same Chromel-Alumel (Type K) Thermocouple below 540C if it was used above 860C.
- (4) Repeat (3) of commissioning. Do it regularly at least once a month.

www.intech.co.nz

Christchurch Ph: +64 3 343 0646 Auckland Ph: 09 827 1930 Email: sales@intech.co.nz XU2HI 190810